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Announcements
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1. Project 1Final Grading by Contribution

2. Homework 4 has a check-off today (Check-off 4 will 

be checked primarily)

3. After a short overview, I will go around asking each 

team (so each team gets about 5 minutes max.) 

about difficulties in the project and approaches 

used.

4. Feel free to leave after showing me the check-off and 

talking to me about the project!
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Project Grading by Contribution
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Final report should include the following:

1. A clear project log on the various techniques each 

teammate explored and its outcomes.

2. Lessons learnt from an approach and the tier each 

approach reached.

3. With the above information, we will evaluate if one 

student has not contributed enough (we would like 

to not see it this way, but some cases are hard to 

look past…)

4. It is fine to not have one teammate’s approach as 

the final Git submission, but the fact that they 

contributed to reach a significant tier through their 

alternative approach also carries weight.
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Max Bezzel
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Queens Problem

Place n Queens on an n × n chessboard so that no 

Queen attacks another, i.e., no two Queens in any row, 

column, or diagonal.  Count the number of possible 

solutions.
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Backtracking Search

Strategy

Try placing Queens row by row.  If you can’t place a 

Queen in a row, backtrack.
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Board Representation

The backtrack search can be implemented as a simple 

recursive procedure, but how should the board be 

represented to facilitate Queen placement?

• array of n2 bytes?

• array of n2 bits?

• array of n bytes?

• 3 bitvectors of size n.
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O

Bitvector Representation

O11 1 1 1 1

down

1

17

O1234567

Placing a Queen in column 

c is not safe if

down & place != 0

where place = 1<<c.
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O

Bitvector Representation

O11 1 1 1 1

down

O
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O1234567

Placing a Queen in column 

c is not safe if

down & place != 0

where place = 1<<c.
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O

Bitvector Representation

O111 1 1 1 1

down
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O1234567

If column c is safe, then 

update 

down |= place

for the next row.

Placing a Queen in column 

c is not safe if

down & place != 0

where place = 1<<c.
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Bitvector Representation
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O1234567

1 1 1 O O O O1

left

1

Placing a Queen in column 

c is not safe if

left & place != 0

where place = 1<<c.
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Bitvector Representation

21

O1234567

1 1 1 O O O O1 O

left

Placing a Queen in column 

c is not safe if

left & place != 0

where place = 1<<c.
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Bitvector Representation
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O1234567

1 1 1 O O O O1 1

left

If column c is safe, then 

update 

left = (left|place)<<1

for the next row.

Placing a Queen in column 

c is not safe if

left & place != 0

where place = 1<<c.
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Bitvector Representation
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O1234567

O O 1 O 1 1 1O

right

1

Placing a Queen in column 

c is not safe if

right & place != 0

where place = 1<<c.
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Bitvector Representation
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O1234567

O O 1 O 1 1 1O

right

O

Placing a Queen in column 

c is not safe if

right & place != 0

where place = 1<<c.
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Bitvector Representation
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O1234567

O O 1 O 1 1 1O

right

1

If column c is safe, then 

update 

right = (right|place)>>1

for the next row.

Placing a Queen in column 

c is not safe if

right & place != 0

where place = 1<<c.
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Queens Code

27

int32_t
queens(uint32_t mask,

uint32_t down,
uint32_t left,
uint32_t right) {

int32_t possible, place;
int32_t count = 0;
if (down == mask) return 1;
for (possible = ~(down|left|right) & mask;

possible != 0;
possible &= ~place) {

place = possible & -possible;
count += queens(mask,

down|place,
((left|place) << 1) & mask,
(right|place) >> 1);

}
return count;

}

Inspired by Tony 

Lezard (1991).

Root call

queens((1<<n)-1, 0, 0, 0));
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