
© 2008–2021 by the MIT 6.172 Lecturers© 2008–2021 by the MIT 6.172 Lecturers

SPEED

LIMIT

∞PER ORDER OF 6.172

RECITATION 1.3

(SIT NEAR YOUR PROJECT

MATES)

1

© 2008–2021 by the MIT 6.172 Lecturers

Announcements

2

1. Project 1Final Grading by Contribution

2. Homework 4 has a check-off today (Check-off 4 will

be checked primarily)

3. After a short overview, I will go around asking each

team (so each team gets about 5 minutes max.)

about difficulties in the project and approaches

used.

4. Feel free to leave after showing me the check-off and

talking to me about the project!

© 2008–2021 by the MIT 6.172 Lecturers

Project Grading by Contribution

3

Final report should include the following:

1. A clear project log on the various techniques each

teammate explored and its outcomes.

2. Lessons learnt from an approach and the tier each

approach reached.

3. With the above information, we will evaluate if one

student has not contributed enough (we would like

to not see it this way, but some cases are hard to

look past…)

4. It is fine to not have one teammate’s approach as

the final Git submission, but the fact that they

contributed to reach a significant tier through their

alternative approach also carries weight.

© 2008–2021 by the MIT 6.172 Lecturers© 2008–2021 by the MIT 6.172 Lecturers

SPEED

LIMIT

∞PER ORDER OF 6.172

THE QUEENS PROBLEM

4

Max Bezzel

© 2008–2021 by the MIT 6.172 Lecturers

Queens Problem

Place n Queens on an n × n chessboard so that no

Queen attacks another, i.e., no two Queens in any row,

column, or diagonal. Count the number of possible

solutions.

5

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

6

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

7

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

8

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

9

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

10

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

Backtrack!

11

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

12

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

Backtrack!

13

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

Backtrack!

14

© 2008–2021 by the MIT 6.172 Lecturers

Backtracking Search

Strategy

Try placing Queens row by row. If you can’t place a

Queen in a row, backtrack.

15

© 2008–2021 by the MIT 6.172 Lecturers

Board Representation

The backtrack search can be implemented as a simple

recursive procedure, but how should the board be

represented to facilitate Queen placement?

• array of n2 bytes?

• array of n2 bits?

• array of n bytes?

• 3 bitvectors of size n.

16

© 2008–2021 by the MIT 6.172 Lecturers

O

Bitvector Representation

O11 1 1 1 1

down

1

17

O1234567

Placing a Queen in column

c is not safe if

down & place != 0

where place = 1<<c.

© 2008–2021 by the MIT 6.172 Lecturers

O

Bitvector Representation

O11 1 1 1 1

down

O

18

O1234567

Placing a Queen in column

c is not safe if

down & place != 0

where place = 1<<c.

© 2008–2021 by the MIT 6.172 Lecturers

O

Bitvector Representation

O111 1 1 1 1

down

19

O1234567

If column c is safe, then

update

down |= place

for the next row.

Placing a Queen in column

c is not safe if

down & place != 0

where place = 1<<c.

© 2008–2021 by the MIT 6.172 Lecturers

Bitvector Representation

20

O1234567

1 1 1 O O O O1

left

1

Placing a Queen in column

c is not safe if

left & place != 0

where place = 1<<c.

© 2008–2021 by the MIT 6.172 Lecturers

Bitvector Representation

21

O1234567

1 1 1 O O O O1 O

left

Placing a Queen in column

c is not safe if

left & place != 0

where place = 1<<c.

© 2008–2021 by the MIT 6.172 Lecturers

Bitvector Representation

22

O1234567

1 1 1 O O O O1 1

left

If column c is safe, then

update

left = (left|place)<<1

for the next row.

Placing a Queen in column

c is not safe if

left & place != 0

where place = 1<<c.

© 2008–2021 by the MIT 6.172 Lecturers

Bitvector Representation

23

O1234567

O O 1 O 1 1 1O

right

1

Placing a Queen in column

c is not safe if

right & place != 0

where place = 1<<c.

© 2008–2021 by the MIT 6.172 Lecturers

Bitvector Representation

24

O1234567

O O 1 O 1 1 1O

right

O

Placing a Queen in column

c is not safe if

right & place != 0

where place = 1<<c.

© 2008–2021 by the MIT 6.172 Lecturers

Bitvector Representation

25

O1234567

O O 1 O 1 1 1O

right

1

If column c is safe, then

update

right = (right|place)>>1

for the next row.

Placing a Queen in column

c is not safe if

right & place != 0

where place = 1<<c.

© 2008–2021 by the MIT 6.172 Lecturers

Queens Code

27

int32_t
queens(uint32_t mask,

uint32_t down,
uint32_t left,
uint32_t right) {

int32_t possible, place;
int32_t count = 0;
if (down == mask) return 1;
for (possible = ~(down|left|right) & mask;

possible != 0;
possible &= ~place) {

place = possible & -possible;
count += queens(mask,

down|place,
((left|place) << 1) & mask,
(right|place) >> 1);

}
return count;

}

Inspired by Tony

Lezard (1991).

Root call

queens((1<<n)-1, 0, 0, 0));

	Slide 1: RECITATION 1.3 (Sit near your project mates)
	Slide 2: Announcements
	Slide 3: Project Grading by Contribution
	Slide 4: The Queens Problem
	Slide 5: Queens Problem
	Slide 6: Backtracking Search
	Slide 7: Backtracking Search
	Slide 8: Backtracking Search
	Slide 9: Backtracking Search
	Slide 10: Backtracking Search
	Slide 11: Backtracking Search
	Slide 12: Backtracking Search
	Slide 13: Backtracking Search
	Slide 14: Backtracking Search
	Slide 15: Backtracking Search
	Slide 16: Board Representation
	Slide 17: Bitvector Representation
	Slide 18: Bitvector Representation
	Slide 19: Bitvector Representation
	Slide 20: Bitvector Representation
	Slide 21: Bitvector Representation
	Slide 22: Bitvector Representation
	Slide 23: Bitvector Representation
	Slide 24: Bitvector Representation
	Slide 25: Bitvector Representation
	Slide 27: Queens Code

